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LETTER TO THE EDITOR 

New method of analysing self-avoiding walks in four 
dimensions 

S Havlin and D Ben-Avraham 
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 

Received 5 January 1982 

Abstract. A new method based on the concept of fractal dimensionality is used to study 
the problem of self-avoiding walks in a four-dimensional lattice. We find from Monte 
Carlo simulations that the confluent logarithmic exponent related to the end-to-end 
distance is Q*0.01, in excellent agreement with the prediction derived from the n+O 
vector model. 

The solution for the problem of self-avoiding walks (SAW) on a four-dimensional 
lattice is known through the analogy with the n = 0 limit of the ferromagnet vector 
model (Larkin and Khmelnitskii 1969, BrCzin et a1 1976, de Gennes 1979). Consider 
for example the theoretical prediction for the correlation length 6 of this model 

6 - t-1/2)ln t1'l8 (d = 4 )  (1) 
where t is the reduced temperature t = (T - TC)/ T,. In the SAW problem, t is analogous 
to 1/No (NO being the total number of steps) and ,$ is analogous to the end-to-end 
distance (RL0)'I2 (de Gennes 1979), so that 

( R ~ N ~ ) ~ / ~  - N;/* (In N ~ ) ~ / ~  (d = 4). (2) 
The logarithmic corrections to scaling laws are of great interest. Series expansions 
have been performed in order to obtain these corrections for the susceptibility of the 
n + 0 ferromagnet in d = 4 (Domb 1974, Guttmann 1978, McKenzie and Gaunt 1980). 
However, these methods do not always give good results for the confluent logarithmic 
exponent (Guttmann and Reeve 1980). Moreover, attempts to obtain logarithmic 
corrections by Monte Carlo methods have not thus far been successful (Kremer et a1 
1981). Following the ideas of Mandelbrot (1977) about fractal dimensionality, we 
define for SAWS the concept of local fractal dimensionality (LFD) 

where (R&)No is the mean square distance of two points separated by N steps in a 
SAW of No steps. The LFD, D ( N ) ,  is a measure of how winding is the walk on a length 
scale corresponding to N. We have discussed elsewhere the physical meaning and the 
usefulness of this parameter (Havlin and Ben-Avraham 1982). In the present work, 
we use LFD for SAWS in d = 4 in order to analyse the logarithmic corrections to scaling 
using Monte Carlo simulations. The method provides very precise results for the 
confluent logarithmic exponent given in (2). 
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We may generalise ( 2 )  to include intrachain distances by writing 

(4) ( R N ) N ~  

D(N)=($+1/8 1nN)-'. ( 5 )  

2 1/2 "'/2(ln N)'/8. 

Using ( 3 )  and (4), we obtain the following prediction for LFD for SAWS in the d = 4 case 

Equation ( 5 )  was investigated numerically for an ensemble of SAWS on a four- 
dimensional hypercubic lattice. The ensemble consists of 6000 SAWS with No = 320. 
It was generated by the enrichment technique (Wall et a1 1963) with p = 5 and s = 80. 
In figure 1, we present the numerical results, together with the theoretical curve given 
by ( 5 ) .  From these results, we conclude that the confluent logarithmic exponent is 
Q*O.01. This value is in excellent agreement with theory. The accuracy of the present 
method compares favourably with that obtained using series expansion calculations 
on other confluent logarithmic exponents (Guttmann 1978, McKenzie 1979). 
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Figure 1. Plot of D ( N )  as a function of N for 6000 SAWS with No = 320 in d = 4. The 
circles represent numerical data. The full lines are the theoretical predictions of equation 
( 5 )  using a, i, & for the confluent logarithmic exponent in a, b and c, respectively 

The generalisation of ( 2 )  to intrachain distances is by no means obvious. Consider 
the case with d lower than 4. In figure 2, we present plots of D as a function of 
x = N/No for No = 80, 160, 320 of SAWS traced on a square lattice (d  = 2) .  It can be 
seen that the LFD is a function of x but is virtually independent of No. For most of 
the range, the LFD is nearly constant. Its value equals l / v ,  where v is the end-to-end 
exponent defined by 

(R $o - N;,  d = 2 .  (6) 
These results can be explained if we extend (6) to 

(R  L) Zf - N "P WINO). (7) 
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Figure 2. Plot of D ( N )  as a function of x = N/No for 10 000 SAWS with No = 80, 160, 
320 in d = 2 dimensions. 

Then, using the definition (3), we obtain 

D(N) = (~+xp’(x)/p(x))-’ ,  (8) 

which shows that D is indeed a function of x.  
The function p(x) is a universal shaping function (for each dimension d ) .  For 

x -0, the value of p ( x )  appears to be nearly constant, whereas p(x) decreases slightly 
near x - 1 (Havlin and Ben-Avraham 1982). This property of p(x) explains why 
D = 1 / U  over a wide range of x. 

In view of the above discussion, it is reasonable to extend (2) in analogy to ( 7 )  for 
d = 4  

(I?;);: - N’/’(ln N)”’p(N/No), d = 4 .  (9) 

Then, using (3), we obtain 

We see that in this case D is no longer a universal function of x as was the case for 
d < 4 ,  but rather, it also depends on No because of the logarithmic term. It is in this 
sense that the logarithmic term is a correction to scaling. It can be shown that the 
corrections for d = 4 indeed arise from the logarithm and not from the universal shape 
function p ( x ) .  In figure 3, we display plots of D as a function of x for chains of length 
No = 40,  80, 160, 320. The fact that D differs for the different values of No indicates 
that we indeed measure the logarithmic term (compare with d = 2 in figure 2). As to 
the contribution arising from the shaping functions p ( x ) ,  it is expected to be minor 
for most values of x. Indeed, for the case d = 2 (figure 2), this contribution is negligible 
over quite a wide range of x, and for d = 3 ,  the contribution of p(x) is still smaller 
(Havlin and Ben-Avraham 1982). Therefore, there is reason to believe that for the 
present case of d = 4 ,  the contribution of p(x) will have very little effect on D. 
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Figure 3. Plot of D ( N )  as a function of x = N / N u  for 10 000 SAWS with N O =  40, 80, 
160, 320 in d = 4 dimensions. The upper curves refer to larger values of No. 

However, the effect of p(x) is important in the vicinity of x = 1, the end-to-end range 
(figures 1 and 3).  Then, in order to obtain the confluent logarithmic exponent, we 
made a best fit only up to x = 3. 

To summarise, we find that the LFD provides a very useful method for studying 
SAWS in four-dimensional lattices. The method is very sensitive for determining the 
confluent logarithmic exponent. It is surprising that the effects of the logarithmic 
corrections to scaling show even for relatively small values of N. 

The authors are grateful to Professor C Domb for helpful discussions, and to I Dayan 
and J Hashkes for carrying out the computer programming. 
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